Language is important for ...

- Information
- Social connections
- Thought

Approximately 6-8 million people in the United States suffer from some form of language impairment.

Cerebral hemispheres

Left hemisphere damage often causes language processing problems

The Cognition and Brain Laboratory Beckman Institute, UIUC

Magnetoencephalography (MEG)

Curator: Dr. Kara D. Federmeier, Department of Psychology and the Beckman Institute, University of Illinois, Urbana IL USA

The **N400** is a feature ("component") of the human scalp-recorded event-related brain potential (ERP). Its name derives from the fact that the N400 is a negative-going potential (relative to a reference behind the ear), which peak around 400 ms post-stimulus onset (and is observed between about 250 and 550 ms) in young adults. The N400 forms part of the typical electrical brain activity seen in response to a wide array of meaningful and potentially meaningful stimuli, including visual and auditory words (and word-like strings of letters), acronyms, sign language signs, pictures, environmental sounds, and gestures.

Contents

- 1 History
- 2 Main Paradigms
- 3 Factors that influence N400 amplitude
 - 3.1 Frequency
 - 3.2 Orthographic neighborhood size
 - 3.3 Repetition
 - 3.4 Semantic/associative priming
 - 3.5 Expectancy/cloze probability
 - 3.6 Attention
- 4 Factors that do not influence N400 amplitude
 - 4.1 Contextual constraint
 - 4.2 Negation/quantification
 - 4.3 Thematic role violations
- 5 Factors that influence N400 latency
 - 5.1 Age and proficiency
 - 5.2 Disease processes
 - 5.3 Presentation rate
- 6 Factors that influence N400 distribution
- 7 Neural sources of the N400
- 8 What the N400 has revealed about language processing and cognition
- 9 References
- 10 See also